Doctorates' Information System

     Soumi Chaki

Ph.D. fromIndian Institute of Technology, Kharagpur - Electrical Engineering
Supervisor(s)  Prof. Aurobinda Routray, Prof. William K. Mohanty
Ph.D. status  Joined in 2014 :: In progress
AddressRoom No- NA-106, VSRC, IIT Kharagpur
Phone+91
Emailsoumibesu2008@gmail.com
Formal Education
Exam / Degree Board / UnivBranchYear
M.Tech.Indian Institute of Technology KharagpurMS (by research) from Electrical Engineering2015
BEBengal Engineering and Science University, Shibpur (IIEST, Shibpur)Electrical Engineering2010
12Bidhannagar Govt. High School, Saltlake, KolkataScience2006
10Bethune Collegiate School, KolkataMadhyamik2004

Research Areas
  • Signal Processing
  • Machine Learning

Skills
  • MATLAB, Python, SQL

Awards
  • Best Paper Award in WIE Track in IEEE Techsym 2014

Experience
  • IBM India Pvt. Limited

Teaching Experience
  • Embedded Systems Laboratory(P) at IIT Kharagpur, India 2012-2015 (3 terms)
  • Signal and Network Laboratory(P) at IIT Kharagpur, India 2012-2014 (1 terms)
  • Electrical Technology Laboratory(P) at IIT Kharagpur, India 2012-2014 (1 terms)
  • Electrical Technology Tutorial(T) at IIT Kharagpur, India 2015 (1 terms)
  • Signal and Networks Tutorial(T) at IIT Kharagpur, India 2015 (1 terms)

Fellowships / Scholarships
  • Junior Research Fellowship

Papers Published in Journals
  • A novel pre-processing scheme to improve the prediction of sand fraction from seismic attributes using neural networks by S. Chaki, A. Routray, and W. K. Mohanty IEEE J. Sel. Topics Appl. Earth Observations and Remote Sens Volume-8 , Issue- 4, pp-1808 - 1820 (2015)
  • Well tops guided prediction of reservoir properties using modular neural network concept a case study from western onshore, India by S. Chaki, A. K. Verma, A. Routray, W. K. Mohanty, and M. Jenamani J. Pet. Sci. Eng. vol. 123, pp. 155-163 (2014)
  • Quantification of sand fraction from seismic attributes using Neuro-Fuzzy approach by A. K. Verma, S. Chaki, A. Routray, W. K. Mohanty, M. Jenamani J. Appl. Geophysics vol. 111, pp. 141-155 (2014)

Papers Presented at Conferences
  • A one-class classification framework using SVDD Application to an imbalanced geological dataset by S. Chaki, A. K. Verma, A. Routray, W. K. Mohanty, and M. Jenamani  2014 IEEE Students Technology Symposium (TechSym) 76-81 (2014)
  • A Novel Framework based on SVDD to Classify Water Saturation from Seismic Attributes by S. Chaki, A. K. Verma, A. Routray, W. K. Mohanty, and M. Jenamani 2014 Fourth International Conference of Emerging Applications of Information Technology (EAIT 2014) ISBN 978-1-4799-4272-5, pp 64-69 (2014)
  • A novel multiclassSVM based framework to classify lithology from well logs a real-world application by S. Chaki, A. Routray, W. K. Mohanty, and M. Jenamani 12th IEEE India International Conference, 2015 (INDICON 2015) Accepted (2015)
  • Development of a hybrid learning system based on SVM, ANFIS and domain knowledge DKFIS by S. Chaki, A. Routray, W. K. Mohanty, and M. Jenamani 12th IEEE India International Conference, 2015 (INDICON 2015) Accepted (2015)
  • Prediction of Porosity and Sand Fraction from Well Log Data using ANN and ANFIS a comparative study by S. Chaki, A. K. Verma, A. Routray, M. Jenamani, W. K. Mohanty, P. K. Chaudhuri, and S. K. Das 10th Biennial Int. Conf. Expo. SPG, Kochi, India P419 (2013)
  • Quantifying Sand Fraction from Seismic Attributes using Modular Artificial Neural Network by Akhilesh K. Verma, Soumi Chaki, Aurobinda Routray, William K. Mohanty, Mamata Jenamani, P. K. Chaudhuri, S. K. Das 10th Biennial Int. Conf. Expo. SPG, Kochi, India P339 (2013)
  • Estimation of Permeability from Well Log Data using Neuro-Fuzzy Techniques for Reservoir Characterization by Akhilesh K. Verma, Soumi Chaki, Aurobinda Routray and William K. Mohanty 49th Annual Convention of IGU on Towards the energy security - Exploration, Exploitation and new strategies at GERMI/PDPU/NGRI/ISR, Gandhinagar Abs. vol. page 98 (Oral talk) (2012)

Indian Institute of Technology, Kharagpur-721 302, INDIA
Telephone Number +91-3222-255221 | FAX : +91-3222-255303